

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry

Bioorganic & Medicinal Chemistry 14 (2006) 8654–8660

Structure–activity relationship for inhibition of 5α -reductase by triterpenoids isolated from *Ganoderma lucidum*

Jie Liu, Kenji Kurashiki, Kuniyoshi Shimizu and Ryuichiro Kondo*

Department of Forest and Forest Products Science, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan

Received 22 June 2006; revised 14 August 2006; accepted 15 August 2006 Available online 8 September 2006

Abstract—In humans, 5α -reductase is involved in the development of benign prostatic hyperplasia. Triterpenoids isolated from ethanol extracts of *Ganoderma lucidum* (Fr.) Krast (Ganodermataceae) inhibited 5α -reductase activity. The presence of the C-3 carbonyl group and of the C-26- α , β -unsaturated carbonyl group was characteristic of almost all inhibitors isolated from *G. lucidum*. © 2006 Elsevier Ltd. All rights reserved.

1. Introduction

The microsomal enzyme steroid 5α -reductase catalyzes the NADPH-dependent reduction of the $\Delta^{4,5}$ double bonds of a variety of 3-oxo- Δ^4 steroids.¹ It is well documented that androgen-responsive tissues such as prostate, seminal vesicle, epididymis, and skin metabolize the conversion of testosterone to 5α -dihydrotestosterone (DHT).^{2,3} This process amplifies the androgenic response, perhaps because of the higher affinity of the androgen receptor for DHT than for testosterone.⁴ Both 5α-reductase and DHT perform critical roles physiologically and pathologically in humans. For example, DHT is necessary for adult prostate enlargement,⁵ for the development of the male genitalia, and for normal beard growth,⁶ while administration of DHT can enlarge the undetectable prostate⁷ in males born with a genetic 5α reductase deficiency.⁸ Elevated DHT plasma levels have been reported in patients with either benign prostatic hyperplasia (BPH) or prostatic cancer.⁹ Therefore, inhibition of and rogen action by 5α -reductase inhibitors is a logical treatment for 5α -reductase activity disorders. Furthermore, with the assistance of modern methods of molecular biology, two types of 5α -reductases, identified as types 1^{10} and 2,^{11,12} have been isolated from human and rat prostatic cDNA libraries, and the structures of both genes have been elucidated. The type

1 isozyme has a broad basic pH optimum and low affinity for testosterone ($K_{\rm m} > 1 \,\mu M$), while the type 2 isozyme has an acidic pH optimum and high affinity for testosterone ($K_{\rm m} < 10$ nM).¹³ The average sequence identity between isozymes within a given species is about 47%, while the sequence identity between the same isozyme across species is 60% for 5α -reductase type 1 and 77% for 5 α -reductase type 2.¹⁴ Early reports found that the type 1 isozyme predominates in tissues such as liver, kidney, brain, lung, and skin, whereas the type 2 isozyme is more abundant in genital tissues such as the prostate. However, some recent evidence shows that, in the human prostate, type 1 is expressed mainly in the epithelial cells, whereas type 2 is localized mainly in the stro-mal compartment.^{13,15} Consequently in advanced prostate cancer, which is characterized by the abnormal proliferation of epithelial cells, type 1 might become the predominant isozyme probably responsible for androgen metabolism. Moreover, it has been shown that 5α reductase type 1 activity is three to four times greater in malignant hyperplasia than in BPH, but 5\alpha-reductase type 2 activity is similar in both diseases. Therefore, we focused on 5α -reductase type 1 activity.

The inhibition of 5α -reductase with organic molecules has been studied for more than two decades. Numerous nonsteroidal and steroidal compounds have been designed and synthesized as competitive, noncompetitive or uncompetitive inhibitors of 5α -reductase. Among them, benzonolinones^{16,17} and 4-azasteroids^{18,19} have high inhibitory potencies to type 1 and/or type 2 enzyme(s) in vitro and/or in vivo. Finasteride, a synthetic 5α -reductase inhibitor, is currently used to treat

Keywords: 5α-Reductase; *Ganoderma lucidum*; Anti-androgen activities; Benign prostatic hyperplasia (BPH).

^{*} Corresponding author. Tel./fax: +81 92 642 2811; e-mail: kondo@agr.kyushu-u.ac.jp

^{0968-0896/\$ -} see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmc.2006.08.018